4,869 research outputs found

    C IV absorption in damped and sub-damped Lyman-alpha systems: correlations with metallicity and implications for galactic winds at z~2-3

    Get PDF
    We present a study of C IV absorption in a sample of 63 damped Lyman-alpha (DLA) systems and 11 sub-DLAs in the redshift range 1.75<z_abs<3.61, using a dataset of high-resolution (6.6 km/s FWHM), high signal-to-noise VLT/UVES spectra. Narrow and broad C IV absorption line components indicate the presence of both warm, photoionized and hot, collisionally ionized gas. We report new correlations between the metallicity (measured in the neutral-phase) and each of the C IV column density, the C IV total line width, and the maximum C IV velocity. We explore the effect on these correlations of the sub-DLAs, the proximate DLAs (defined as those within 5 000 km/s of the quasar), the saturated absorbers, and the metal line used to measure the metallicity, and we find the correlations to be robust. There is no evidence for any difference between the measured properties of DLA C IV and sub-DLA C IV. In 25 DLAs and 4 sub-DLAs, covering 2.5 dex in [Z/H], we directly observe C IV moving above the escape speed, where v_esc is derived from the total line width of the neutral gas profiles. These high-velocity C IV clouds, unbound from the central potential well, can be interpreted as highly ionized outflowing winds, which are predicted by numerical simulations of galaxy feedback. The distribution of C IV column density in DLAs and sub-DLAs is similar to the distribution in Lyman Break galaxies, where winds are directly observed, supporting the idea that supernova feedback creates the ionized gas in DLAs. The unbound C IV absorbers show a median mass flow rate of ~22(r/40 kpc) solar masses per year, where r is the characteristic C IV radius. Their kinetic energy fluxes are large enough that a star formation rate (SFR) of ~2 solar masses per year is required to power them.Comment: 21 pages, accepted to A&A, Fig 1 downgraded, v2 with proof corrections made and improved Fig 1

    A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses

    Full text link
    Many contemporary studies have shown that astrocytes play a significant role in modulating both short and long form of synaptic plasticity. There are very few experimental models which elucidate the role of astrocyte over Long-term Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of astrocytes in induction of LTP at single hippocampal synapses. They suggested a purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA) Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic induction were not investigated. Here, in this article, we propose a mathematical model for astrocyte modulated LTP which successfully emulates the experimental findings of Perea & Araque (2007). Our study suggests the role of retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically modulated LTP.Comment: 51 pages, 15 figures, Journal of Computational Neuroscience (to appear

    X-Ray Flares of Gamma-Ray Bursts: Quakes of Solid Quark Stars?

    Full text link
    We propose a star-quake model to understand X-ray flares of both long and short Gamma-ray bursts (GRBs) in a solid quark star regime. Two kinds of central engines for GRBs are available if pulsar-like stars are actually (solid) quark stars, i.e., the SNE-type GRBs and the SGR-type GRBs. It is found that a quark star could be solidified about 10^3 to 10^6 s later after its birth if the critical temperature of phase transition is a few MeV, and then a new source of free energy (i.e., elastic and gravitational ones, rather than rotational or magnetic energy) could be possible to power GRB X-ray flares.Comment: 8 pages, latex file. 2 figures. To appear in Science in China Series

    Inclusive production of ρ0(770),f0(980)\rho^{0}(770), f_0(980) and f2(1270)f_2(1270) mesons in νμ\nu_{\mu} charged current interactions

    Full text link
    The inclusive production of the meson resonances ρ0(770)\rho^{0}(770), f0(980)f_0(980) and f2(1270)f_2(1270) in neutrino-nucleus charged current interactions has been studied with the NOMAD detector exposed to the wide band neutrino beam generated by 450 GeV protons at the CERN SPS. For the first time the f0(980)f_{0}(980) meson is observed in neutrino interactions. The statistical significance of its observation is 6 standard deviations. The presence of f2(1270)f_{2}(1270) in neutrino interactions is reliably established. The average multiplicity of these three resonances is measured as a function of several kinematic variables. The experimental results are compared to the multiplicities obtained from a simulation based on the Lund model. In addition, the average multiplicity of ρ0(770)\rho^{0}(770) in antineutrino - nucleus interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.

    Search for Colour Singlet and Colour Reconnection Effects in Hadronic Z Decays at LEP

    Get PDF
    A search is performed in symmetric 3-jet hadronic Z decay events for evidence of colour singlet production or colour reconnection effects. Asymmetries in the angular separation of particles are found to be sensitive indicators of such effects. Upper limits on the level of colour singlet production and colour reconnection effects are established for a variety of models

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Explanatory pluralism in the medical sciences: theory and practice

    Get PDF
    Explanatory pluralism is the view that the best form and level of explanation depends on the kind of question one seeks to answer by the explanation, and that in order to answer all questions in the best way possible, we need more than one form and level of explanation. In the first part of this article, we argue that explanatory pluralism holds for the medical sciences, at least in theory. However, in the second part of the article we show that medical research and practice is actually not fully and truly explanatory pluralist yet. Although the literature demonstrates a slowly growing interest in non-reductive explanations in medicine, the dominant approach in medicine is still methodologically reductionist. This implies that non-reductive explanations often do not get the attention they deserve. We argue that the field of medicine could benefit greatly by reconsidering its reductive tendencies and becoming fully and truly explanatory pluralist. Nonetheless, trying to achieve the right balance in the search for and application of reductive and non-reductive explanations will in any case be a difficult exercise

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa
    corecore